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INTERPLANETARY TRAJECTORIES*
F. G. Gravalost

The aim of this work is to solve the two-point ""limit
problem' within the gravitational field of the solar
system. To make possible a concise mathematical
formulation of the problem, a method is presented for
the definition of a physical model '""ad hoc" to whatever
interplanetary trajectories must be studied. Picard's
iterative method for constructing solutions, with an
essential modification found empirically, is given and
numerical results systematically obtained are presented,

INTRODUCTION

In recent years, considerable work has been done on the problem of de-
termining interplanetary trajectories, both in the United States and
abroad, At home, various n-body programs, which are a mixture of
astronomical and numerical integration techniques, were developed.
These programs can be used directly for the solution of the initial bound-
ary —alue problem: '"Given the position and velocity at a given instant,
determine the corresponding trajectory.' By application of a trial and
error procedure these programs have also been used to solve numerically
the boundary value problem we call the "limit problem'': '""Determine the
trajectory that goes through two given points at two given instants.'" The

mathematical foundations that justify this type of approach were given at

*This paper was prepared with the collaboration of A, J, Dennison,
Mathematician, Navigation and Control - Engineering, and M. McDevitt,
Engineer, Flight Mechanics - Systems Engineering, Missile and Space
Vehicle Department, General Electric Company, Philadelphia

+Consultant, Applied Mechanics - Systems Engineering, Missile and
Space Vehicle Dept,, General Electric Co,, Philadelphia




the turn of the century by Paul Painleve. He showed that the singularit-

ies in the equations of celestial mechanics are always removable, From

these thoughts sprang epoch-making papers by Levi-Civita and Sundman.
Recently, Benedikt{l) has determined the technical value and limitations

of Levi-Civita's work, My teacher, the late Professor G. D. Birkhoff,(z}

elucidated Sundman's paper and made it accessible to a large public,
However, from the point.of view of scientific engineering, one is not con-

cerned with ""collision trajectories' in the sense of modern dynamics,

Instead, it is the "limit problem' that has primary importance in tech-

nical applications,

The present work is divided into three parts, In Part 1 the physical

model-is defined. Although we have only dealt with trajectories from
near the earth to the moon, the method outlined for the selection of the

relevant planets, as well as the form of the corresponding differential

equations, is completely general, This is, in spite of its simplicity, an

essential novelty of this work,

Part 2 is divided into sections that, logically, are quite apart. Using
ideas E. Picard(3) first published in 1893, the two-point limit problem
is rigorously formulated in an integral form. Trying to use Picard's
method of successive approximations for the actual construction of so-
lutions, a cyclic process was devised - section 2. 2 - by means of which

solutions were obtained even for cases when the original iterative process

is divergent. This scheme, as presented here, has no scientific value,
However, if numerical results are viewed as phenomena, this cyclic

sch~me become<s a very interesting experimental tool, by use of which

solutions can be obtained and the nature of the specific problem at hand

can be analyzed, This work is not concerned with the determination of
the general conditions of applicability of this scheme; but, it is hoped,

this and related questions will be studied in a forthcoming paper.
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In Part 3, numerical results of high accuracy are presented. The nu-
merical analysis that should precede, or accompany, the construction

of solutions is outlined in section 3. 3,
i (g PHYSICAL MODEL
1.1 GENERAL CONCEPTS

For any problem involving the calculation of interplanetary trajectories,
and independent of what is the particular problem at hand, the first ques-
tions to resolve are what physical model and what coordinate system of
reference should be used. In this work, a system of Cartesian coordi-
nates at absolute rest - a Galilean system* - is assumed with center at
the Sun, with respect to which another Cartesian system rigidly attached
to it - and, naturally, Galilean - is defined and used as a system of ref-
erence, All the planets and the Sun are considered particles - points
with finite mass - and our differential equations define the motion of a
negligible mass in the time dependent gravitational field created by cer-
tain planets, selected as bearing mensurable influence upon the motion
in question, in their known motions within the solar system. Since we
take the results of astronomical work as physical data, our equations
are very much simpler than those usually used in the so-called n-body
programs; on the other hand, a selection of the planets that determine

the motion must be made "'a priori, "

Let these assumptions be examined more closely., The equations of free

dynamical systems are the analytic expressions for the symbolic relation,
Inertial Terms = Acting Forces (1)

Astronomers provide us with the positions of planets in the equatorial

system - shown in Fig. 1 - versus time, with a given reference date,

Since only gravitational forces are considered, and these are defined

*By definition, Galilean systems include also those moving without

acceleration,
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SUN

0BLIQUITY TO
THE ECLIPTIC

ASCENDING NODE OF EARTH'S ORBIT
DEFINED BY SUN-VERNAL EQUINOX LINE

Fig.l Definition of the Galilean System of Reference

completely by the relative position of the point masses, the right hand
side of Eq. (1) will be written for our physical model with no "error",

if the astronomical data is supposed to be '"exact, "

In Newtonian mechanics the existence of a system of coordinates is al-
ways assumed at absolute rest., Therefore, the error committed when
writing the acceleration components on our Galilean system can only be
examined with reference to motions known to exist and can only be de-
termined with the accuracy with which those motions are quantitatively
known. Let ‘-JG and SS be the angular velocity vectors of the motions
of the center of mass, c. ﬁn., of the solar system about our galactic
axis - the line at absolute rest - and of the Sun about the ¢, m. of the

: o~ . . .
solar system, respectively, both :;G and W being obtained with the

Sun as the reference point for the decomposition of the motions. If
these motions are taken into account, the left-hand side of Eq. (1); i.e.,
the acceleration per unit mass, will be given by the vector.

P - s
v o @ v
+(uG+ S)x
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where the local time-derivative, indicated by the ''dot", is taken with

respect to a system rigidly attached to the Sun, * Thence, the error

committed on the left hand side of Eq. (1) due to the assumption that our

system of reference is at absolute rest is given by
S ~+
(D + 3 xVv

It is known that the solar system moves about our galactic axis with a
periodic motion; let the period by -"I: Neglecting 35, and assuming this
motion rigi&i, for a vehicle moving at, say, 30, 000 ft/sec and for an
optimum relative position of its velocity vector, ‘{"’, and 3 , the error
in position will be less than 4, 500 ft per year of flight time, for T equals

100 million years.

Let it be remarked that, although Einstein's gravitational tensor is inde-
pendent of any specific system of coordinates, in order to write the differ-
ential equations of motion for the known integrable cases (Schwarzchild,
Painleve’), a system of reference at absolute rest must also be explicitly

assumed within the framework of the General Theory of Relativity,
1.2 PHYSICAL MODEL FOR EARTH-MOON TRAJECTORIES

The motion of a space vehicle - as a point mass - will be studied in the
gravitational field created by the Sun, the Earth, and the Moon. The

qualitative reasoning for this selection runs as follows: Although, for

relatively short intervals of total flight time, the influence of the Sun
may be negligible, there will always be a portion of the flight under the
almost exclusive influence of the Sun, Moreover, to account for the
presence of the Sun does not bring any extraneous complexity in the com-
putations, for the distances from the vehicle to the Earth and to the Moon

must be calculated using their coordinates in the equatorial system.

An example of the quantitative analysis that should precede the selection

of planets will show how insufficient a reasoning such as that in the

*In Newtonian mechanics, ''all the clocks are synchronized'; thus, only
the relative motions need be considered,
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?}: above paragraph could be, In Fig. 2, the motion from a point Pl to
ﬁ‘f‘ another point PZ is shown as being uniform, for given Julian dates. The
{i forces per unit mass exerted upon this particular motion - the simplest
,: that can be assumed - by different planets are given in g's in Fig. 3.

i I From this graph an upper limit for the effect of neglecting, say, Jupiter
:" is found to be about ten million feet in positional error for 75 hrs of
} flight time, a magnitude considerably larger than the numerical error
f:*: of our solutions (see Part 3). It should, however, be noted that just the
j‘ addition of another term in Eq. (3) would not avoid this error; to account
L for such effect, the summations in Eq. (10) must be adequately arranged.
: By use of ephemeris tables, the coordinates of the Moon and the Earth,
;'%'::' in our Galilean system, 0 - xl, x 2, x3 at specific intervals of time,
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can be easily obtained. Although
these data are given at discrete
points, we shall write e

i i
X S d = constant
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} x* = xi i=1,23 ' 3
.?. - xE{t) (i=1,2,3) \(,-mm
& (2) B woon—
¥ xi 2kl P -
L M M ]
5 \- \
e and suppose these functions to .
be - as they are - continuous in o4
the interval of time in which the /
“.‘ motion takes place, We shall /
= that, with our f lati
? see at, wi our iormulation .0‘5 //

of the problem and method of

solution, the data can be treated g's
as given by functional relations

without direct reduction to ana-

lytic expressions.

For this physical model, the o

equations of motion of a particle
of negligible mass - with respect

to the gravitational masses in- o8

/-r— APTER

volved - take in our system of

coordinates the following simple

form.

/-- SATURN

—_— Fig. 3 Influence in g's

{ of Different Planets Along
the "'Initial Solution"

e |

/]

480

485

JULIAN DATE MINUS 2436900

50

435

500

i




o 2)-3

K [dl_XIngl[dJ <]] E 2
3 . 2)-3 :
+Rg[xL® -x]] j'2-_;1[::1’.3&) - x]] z 2 (3) ]

3 9, .3 3 . 8
o= [ -+
-X Xap(t) - x p—
+KM["M(t) ijﬂ m® > (4] =1,2,3)
b
where Ks, K , and KM are the products of the universal gravitational , i
constant times the masses of the Sun, the Earth, and the Moon, respec-
tively, For other interplanetary problems that require taking into ac-
; count the presence of other, or of additional planets, the corresponding
differential equations will remain of the same general form, -
2, THE LIMIT PROBLEM E N
2.1 MATHEMATICAL FORMULATION x
Equations (3) are of the form Y
wi i .. T
x =g (x%, 1) (4,j=1,2,3) (4)
v
and a solution is sought such that o
xi(t)) = al (5)
xit, + T) = bl
i, e, the solution that goes from Pl: [a.i) to Pz: (b i} in the interval of t1
time T. The constant ty is an additive constant and will be always taken p:
equal to zero, .
If a solution, xi' = xi(aj, lj, t), of the initial value problem
x1(0) = al
“.

x10) - &




were obtainable in closed form and the equations

xi(al, @J, T)= bl

for ! had a solution, the limit problem defined above would be solved,

x This approach is only possible in trivial cases,

(3)
3 To use Picard's thoughts for the solution of our limit problem, let the

gi(xJ, t) of Eq. (4) be the functions in the right hand side of Eq. (3) and

xi(t) = xi(ad, b, ¢) (6)
be a solution of (13) satisfying the conditions of Eq. (5). Then, the
snal integral relation, T '
'spec- o : : t i ; :
x't)=a'+ —[(b1 -al)- f('I' -0gt &), 1) dr]
ac- T 0
nding A (7)
t
i,j &
+ ) (t-r)g" (x'(r), r)dr,
0
will be satisfied identically in t and, conversely, any set of functions
"'_ xi{t) satisfying Eq, (7) is a solution of Eq., (3) plus Eq. (5), as can be
verified by derivation.

(4) The right-hand side of Eq. (7) may be interpreted in a dual role: As a
vector operator, ri [xJ (t)] , that permits obtaining sequentially from
any given set of functions xfl'l(t) another set,

(5) k.

_--._ : i _ ] 8
; pe1 ® = T[x] o] | ©
of that always verifies the conditions of Eq, (5), and as an operator that
taken

provides the means '""to check'" whether any given set of functions x }(t)

verifying Eq. (5) is a solution of Eq., (3). For, in that case,

@) = [zl o). (9)

With gi(x]i_l k), Y= EL(t), the operator r, may be written in the compact

form,




xh+1(t)=a + ?[(bi_ai)“f(T-r)E;(r)dr] ori_

0 -
(10) : To «

+0f(t -1) g () dr = g[xd ). tion

= e o i i : L
The operator [‘i , giving the derivatives of X, x I(t) from x h (t), is . -
defined by the similar formula,
: | .
3 an
h+1(t)"_'(b -a ) f(T-r)gh(r)dr] . |
' £ Lipe
11 i
(11 3 the :
+ fa;(r) dr = fi[x; ®)] - i Hete
/ 0 _ (] I.r’.st(
Both r‘l and f‘i may be obtained from Eq. (4) by formal integrations, alwa
: give
2,2 METHOD OF SOLUTION
: the =
Picard's iterative method - with some essential modifications - is used -
to construct solutions.
’I‘ake , as "initial guess'' of the solution, an arbitrary set of functions
x 0 (t), verifying the conditions of Eq. (5). Repeated use of the operator ¥
r'i and of l.‘i yields the double sequence of functions
j 2Med (1) h(,j i
qlxp @], rifxde], - Tlxo®l-xy0 02 3
r.[x] [x @], - [xd 0] .
1["0 ®], 5 [} @], 1.'1["‘11(") (13) L
g
If the limit Bt 3 #
lim T, [x%,(t)] = lim x ft) = X (t)
Nse * = F h+o (14) 2:-
exists, then
L _ el 2 *In al
,. I[hm X (t)] =X (t) (15) ies fc

*Although [xj (t)] is call i an operator, it is nothing but a convenient
1

;‘. notation; for l"i] [xlo(t)] is not well defined,
i
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and xi(t) and xi(t) are the coordinates and the velocity compdnents of our

original dynamical problem.,

To obtain the conditions for convergence for a single differential equa-

¥ tion, Picard wrote the sequences (12) and (13) in the form of series,
;. XB&)+[xi&)-xa&ﬂ-+ ----- [xha),xh_1@ﬂ+ _____
X0 @ + [ ® - x5 ®)] + ----- [£,® - %} _,®]+ --—--

and found that, if the right hand side of Eq. (3) (i=1, only) verifies
Lipschitz's condition and both T and the absolute value of the slope of
the straight line joining the points Pl and P2 (in the x-t plane) are suf-
ficiently small, a solution of Eq. (4) plus Eq. (5) exists and is unique.

F Instead of discussing these questions in general terms, something which
always implies the "a priori" selection of dominant constants, we shall
give numerical techniques that provide simultaneously the solution* and

the analysis of the specific problem at hand.

. T i I e ‘ i Y i D e e S T
e, o A 3 s i . = 8 e A ek e
g )‘_‘mhvﬂﬂm.“-ﬂ-n‘:\:;d-m“n it D T e e Y8

In essence, these numerical techniques consist of the following steps:
# i. - Divide the time interval (0, T ) into n parts, which need not be
equal,

ii. - Compute the values of xiE(t) and x;i{t) at those n values of t,

(If, by electronic machines, these values are computed as
needed, considerable storage space is saved, but the compu-

tational time is increased.)

3 iii, - Select an arbitrary set of functions x[;(t} that verify conditions

- of Eq. (5)

iv. - Set an algorithm to carry out the operations in Eqs. (10) and

(11); i. e. arrange the necessary calculations to obtain

*In all the cases studied solutions were obtained; these included trajector- 145
i
ies for T = 84 hours. q_i
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ri[x:l"l(t)] and Fi[xll'l(t). from x; (t) at the selected values of t,

v. - Examine whether the differences

[ m ml (16)

[xho] -2 o
Fi[xh(t) X (t) (17)
are, for all the n values of t, smaller than prescribed numbers

- defining the accuracy of the iteration process - from a certain

h onward.

vi, - The examination of numerical results shows that each of. the -
sequences (12) and (13) separates into two distinct sequences, **
corresponding to the odd-and even iterations for each of the

xi(t),

i i i
=@, x}®), —---xb © —-- .

x3®), x4 ---=-xb @) -

(and the same for their derivatives).

it

One observes further that these double sequences converge to a common

limit, or diverge from each other, depending - as it should be - on the

physical nature of the problem under scrutiny. In both cases, rates of

convergence, or of divergence, of the sequences x2h+ 1(t) and x h(t}

are extremely small (very near unity) and almost identical. Therefore,

the following simple, but essential, modification in the iteration process

was introduced: After an arbitrarily selected number m of iterations, an

average is taken of the last two, and the result, -
i i

xaﬁﬂsxmm;xmdm: (19) 4

is used as a new initial guess, x.i 1f_t} of the.solution. This mixed cycle

of m-iterations and an average is repeatedly applied, and the resulting

sequence for the xo k(t) can be described by use of the operator l" in 1

**The mathematical reasons for this phenomenon will be discussed in a
forthcoming paper.
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the following manner,

rit[xd @] + i [x) @]

and so forth, To the sequence

j ) B e
Fi["o,l(t)]’ Fi["o,z(t)]’ ’ l“11["‘0,k(t)] (21)
there corresponds the sequence,

ti[xh @), y[xdp @) - , Bylxd, O] -

for the % (t).

The examination of results is not, however, done on the sequences (20)
and (21) directly. Using the role of FI indicated by (9), the differences
r [ ) ] <l l

i X0,k ®)] - X ® (23)

are examined to determine whether xa k{t) is a solution of Eq. (4) and

(5)*%. It is of importance to examine also the double sequences,

r [ @], r3[xd (@], - oP [ L) (24)
riz[x%,k(t)]’ vy [x%,k(t)]' """ , T ["%,k“"] 125}

(written for m even) and those corresponding to :'cl(t}, for the nature of

the specific problem at hand is defined by the convergence, or diver-

gence, of these sequences.

In general, a solution is attained after 5, 6, or 10 complete cycles -

m equals 20 - even when the two original sequences (18) are divergent,

These are truly remarkable numerical events, for a simple modificatien

to Picard's method - the averaging process - permits construction of

#lz this caww I, [ (0] = Tc:'ri[x%,k(t)]

RO 1 s T T

MRS L e N Ty R e ST T e R e ] S TP ERTE
¥ s 4T bk iy
P b o e A sasien » s Sttt P AR sl e i
it ik s et : gt e £ et L SR s i 25 Ni W s e o e

S




solutions in cases where the results of Picard's straight iteration process
tell us that the solution is not necessarily unique,

2.3 FACTORS AFFECTING THE ACCURACY AND THE RAPIDITY OF
THE PROCESS

These factors are:

i. - The number and distribution of the n values of t, between

Oand T '
ii, - The formula used for the numerical integrations in Fi.and ["i
iii. - The number of digits carried out in the computations
iv., - The initial guess of the solution
v. - The number m defining the cycle described in 2. 2vi

These factors are related to each other and to the form in which astro-
nomical data are available., If the n time-values are not coincident with
those for which x ::(t} and x;{{t} are given, an interpolation formula will
have to be used to acquire the needed values of xé and x:d. This formula
should fit consistently with the integration scheme for the calculation of

l"iL and f‘i; i, e., neither the interpolation nor the integration formula
should imply an order of approximation which the other makes it impos-
sible to reach. In this connection, some astronomical work comes into
the picture, for the interpolation formula should be one of those used in

astronomy,

With these ideas in mind, since computing machines have a limited stor-
age capacity and to operate them is costly, the worker must make a
compromise as to what computational arrangement is most adequate for

his purpose,

Once these choices are made, and assuming that our process of con-
structing solutions is converging, the question arises of whether for
different n's there will result different solutions; the optimum solution

to the physical problem is given by that maximum division of the interval
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(O, T) into n parts beyond which the accuracy of the solution cannot be
improved. This, in turn, is related to the number of digits carried in
the computations: The value of any term in the sums representing the
integrals in ri and f'i for n = n must always be such that, its own indi-
vidual error is adequately bound, and large enough to alter at least the
last significant digit of all possible partial sums. For any subdivision
beyond such fi, the integration process will degenerate; this should be

first detected by fluctuations in the values of xi{t} in some part of the

trajectory.

The number of digits carried in the computations plays another, very

important role,

The sequence of powers of the operator Pi applied to xé{t) represents
successive corrections to the initial guess., Thence, it is clear that the
number of digits carried in the computations determines the degree of

accuracy - and, therefore, of speed - with which these corrections are

performed, i, e, the number h for which

e e] - pcho]] <

is a function of the number of digits carried in the arithmetic operations,

From the above, intuitive interpretation of the sequences l"{l , it is also
clear that the better the initial guess is, the faster will be the conver-
gence to the solution. Since for the cases where the straight iteration

process is not convergent it is not possible to guarantee the uniqueness

of the solution, one should ask whether different choices of xé(t) would

yield different, or differently converging solutions.

The same question is applicable to the choice of m: Does the repeated
application of our complete cycle yield different solutions for different

m's? The dependence on m of the value of k for which
b ] - il )
|r{ [x(},k(t) » ‘i["o,k(t) <

from k on, is obvious,




NUMERICAL RESULTS

3.1 SIMPLIFIED PHYSICAL MODEL

Inasmuch as in the present work we are not concerned with the analysis
of a specific mission, assumptions have been made that simplify consider-
ably the computational work but leave unaltered the questions pertaining

to the method,
These simplifications are:

i, - The Earth moves about the Sun in a perfect circle,

ii. - The Moon also moves about the Earth in a perfect circle,
iii, - The integrals in I‘i and f‘i are calculated by Simpson's rule.

To obtain the functions xé{t} and x:&(t}, to define the problem, and
to present the results, the following systems of coordinates are

used:

The Galilean system with center at the Sun, S - ¢ 1’ 4_2, ¢3

The fundamental system of reference, 0 - xl, xz, x3

A system of coordinates with center at the Earth, E- 51, 52

3 and always parallel to 0 - xl, xz, x3.
f [ p

»

A system-of coordinates with center at the Moon, M- 1 2

Ty M,
7 3 and always parallel to O-xI, xz, x3

All these systems are well defined by Fig, 1. The data required in Eq.

(3) can be written immediately,

For the Sun's coordinates,

g gt o
d®= p
£
St
: a= o,

572




R = 80728492 N, M,
For the Earth's coordinates,

x%:(t)=R[cos(flt) -—1]

I
453
i
.

der- x%(t) = R sin ( 0t)
g
; 0 =7.1676658 x 10~ rad. /hr.
For the Moon's coordinates
1 1
xM(t) =Xg (t) + r[cos ¢ COSs (mo + ot) - sin ¢ cos y sin ( wg + c:.t)]
e,
2 2 . .
i xM(t) =xg t) + r[sm # cos (00 + ot) + cos ¢cos ¢ sin (00 + é:t)]
xgd(t) = rsin ¢sin (mo + ot)
2
2

fi

E;r December 1961, the Moon's center moves roughly on this plane.)

Fig. 4 Location of Plane of the Idealized Moon's Motion




with r = 207561, 40 N. M., & = 9. 5823497 x 10”3 rad. /hr., @= 2. 4434609

rad,, 5" = 4,0944 x 10-2 rad, and @, a constant value which is specified

0
later on. Thence, the Moon moves in the plane E - 77'1, 1?';, defined in

" the system E - gl, gz, §3 as follows: 7, and 7, are the positions of
fl and ;2 after a ¢ - rotation about f3, and 7T; is the position of
'ETZ after a ¢ - rotation about 77'1. (See Fig. 4)

3.2 DESCRIPTION AND SCOPE OF THE NUMERICAL EXAMPLES

The principal aim of the numerical work was to test, or to try Picard's
iterative method., A systematic array of computations was prepared for

the simplified model described in the preceding section,

The schedule for the set of runs, labeled Run I-1 is given below,

Runs I : T= 174 hrs.;P2M= 1827 NNM.*att=T

RunI-1 : P E= 10500 N.M. att= 0.
Run I-2 FIE: 8000 N, M L LELD
Run I-3 : TE’: 7000 N, M, " mora
Run I-4 p_lE = 6000 N. M, " o
Run I-5 f)F:': 5000 N, M, ' o
Run I-6 f-"-l_E: 4000 N, M, " "o
Run I-7 f»‘ﬁ: 3700 N. M, " muom

These runs were started with an initial guess, x} (t), given by

0

i i S N
(kg = %)) (£ = T) - (x5 - x,) t=D (26)

This motion is that shown in Fig. 2

* An input card was erroneously punched at the onset of the numerical
work and was kept uncorrected all through the computation, p-zm was
intended to be such that the final distance to the moon's surface would
be 1000 N, M.,
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By direct use of Picard's iterative.process, solutions were obtained
after 400 iterations for Runs I-1, I-2, but not for Run I-3; convergence
in this case would have required something of the order of 5 x 10° iter-

ations, Furthermore, for these two runs the convergence was achieved

only to 4 or 5 digits. A change to the cyclic process described in Section
2. 2 was, therefore, indicated and the results presented in Tables I

through VII were then obtained.

These trajectories represent a gradual approach to the Earth, carried

as far as '""practicable' (200 N, M. ) from the surface of the actual Earth.
It was intended to show, as it does, how the convergence process alters
with the distance of Pl to the ""strong' singularity of the differential equa-
tions (3). The number of cycles required for convergency increases to

6 for PIE = 5000 N. M. with m constant. For this value of ISIE, the

initial guess was changed from the arbitrary uniform motion of Eq. (26)

to a more ""educated'' guess from the previous run; otherwise, the number i! 3
e
of cycles required would have been considerably greater, §
&
et
3

How the "odd" and '"even'' sequences begin to diverge from each other

for P\E= €000 N, M, is shown in Fig. 5, for two values of t, t= 7,4 hr,
and t = 66, 6 hr,

i
Finally, a trajectory, Run II, Table VIII, from 200 N. M, from the sur- 2
face of the earth to impact on the moon was computed. Again the numer-

ical results corroborate the marked influence of the "weak'" singularity,

located at the Moon.

L
ESof 4 !
Ten cycles were required to achieve a convergency 3
of the same order as that of Tables I through VII. Since this run is obvi-
ously the most interesting, a graphical presentation of the results is

given in Figs, 6 through 10,

From Runs I-1 through I-7 the two curves of Figs. lla and 11b were

obtained. For a systematic analysis of an interplanetary mission, these

curves are most important; they define the requirements for launching at

a certain altitude and give the necessary information to know what will be
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the future history of the vehicle at ]I-”’2 and t= T, the vehicle will land on, ff’f 8
circle, or leave the target planet, depending on the value of the velocity f __
. Ir
at PZ’ t= T -
t
All these calculations were carried out with 12 digits, The values in ¢t
the tables are typical. Naturally, the one thousand points calculated th

could not be presented,
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3.3 NUMERICAL ANALYSIS

The work of this section is an example of the numerical investigations
that should be carried out to determine '""the best'" selection of n, m, and
the initial guess, As noted previously, these inquiries are intimately
connected with the formula used for the summations in ["i and i‘i’ and
to the number of digits carried in the computations, Therefore, the
validity of these examples is limited to integrations by Simpson's rule,

and to numerical operations with 12 digits,

The effect of the number of digits on the solution is shown in Table IX.
The numbers printed are those to which the solution has converged after

80 iterations.

In Table X, the variation of the solution with n is clear. The printed
numbers are those to which the solution has converged and it is evident
that slightly different solutions result for different n's, Limitations in
the memory capacity of the computer, for our special program, made
it impossible to increase n beyond one thousand; therefore, it cannot be

said that the "optimum' corresponds to the larger n tried. However,
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inspection of the numbers indicates that n= 1000 is very close to that

optimum,

" In Table XI, the change in the rate of convergence with m is shown,

VELOCITY AT P; RELATIVE TO EARTH IN N.MJHR.

m = 6 being definitely the best of the two m's studied (20 and 6). An

adequate selection of m may save a considerable amount of computational

time,

Finally, in Table XII, the effect of the initial guess on the solution is
shown, Two different initial guesses were tried, the uniform motion of
Eq. (26) and a ""guess' obtained from the previous run - that next and at

a greater distance from the Earth - by a simple "stretching.'" The re-

sults show that the change in the '"'initial" guess affects only the rate of

convergence to, but not the solution, Whether different solutions would

would result for widely different ""initial" guesses, cannot be ascertained,

Of course, all throughout these numerical investigations only one factor

was changed at a time, The selection of initial conditions for testing the

effect on the convergence process of varying m, n, the initial guess, and

the number of digits was determined by purely logistic reasoning.
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RUN I-1

TABLE 1

Pi (¢ = -8043, ¢2aom9, (2a0)ate-0; Py (0! -1097.82, 2= 114475, 1Y - EBattaT
P\E = 10500, att = 0: P,M = 1827 at t = T. Lengths in N. M.

T = T4 hours
i

n = 1001

m = 20

k=35

xy from (x} - x}) -1 -l -x)t-0. mputs xL_km, Output » 1 (x)  (©

sl x () KR BNl X (e ) (M. /o) BN/
0 INPUT -8043.0000 6749.0000 0 -12180.889 58163.330 101.17823
OUTPUT -8043.0000 6749.0000 0 -12180.889 58163.330 101.17823
1.4 INPUT -56352.105 421047.92 545.35016 -4632,8414 55858.609 57.463935
OUTPUT -56352.105 421047.92 545.35016 -4632.8414 55858.609 57.463950
14.8 INPUT -86592.525 835300.81 917.06350 -3715.7929 56093444 44.583728
OUTPUT -86592.525 83530081 917.06351 -3715.7929 56093, 444 44.583738
22.2 INPUT -112728.36 1251090.1 1218.4498 -3400.4775 56273.905 37.404892
OUTPUT -112728.36 1251090.1 1218.4498 -3400.4775 56273.905 37.404897
29.8 INPUT -137440.22 1668058.2 1476.1166 -3302.5710 56415,022 32,497369
OUTPUT -137440.22 1668058.2 1476.1166 -3302.5710 56415.022 32.497374
31.0 INPUT -181874.11 2085970.7 1702.4135 -3314.9766 56530.916 28.825253
OUTPUT -161874.11 2085970.7 1702.4135 -3314.9766 56530916 28.825263
444 INPUT -186666.78 2504675.3 1904.7699 -3394.9517 56630.339 25.989683
OUTPUT -186666.78 2504675.3 1904.7699 -3394.9517 56630339 25.989693
51.8 INPUT -212238.78 2924075.3 2088.9079 -3523.7883 56719.896 23.916630
OUTPUT -212238.78 2924075.3 2088.9079 -3523.7883 56719.806 23.916640
59.2 INPUT -238929.85 3344124.7 2261.5802 -3698.4268 56807.714 23.053020
OUTPUT -238929.85 33441247 2261.5802 -3698.4268 56807.714 23.053030
66.6 INPUT -267154.74 3764877.4 2440.2742 -3950.7398 56917.831 26.947305
OUTPUT -267154.74 3764877.4 2440.2742 -3950,7398 56917.831 26.947315
74.0 INPUT -208833.25 4187403.4 2999.9999 -5422,1507 57968.734 571.80040
OUTPUT -208833.25 4187403 4 2999.9999 -5422.1597 57968.734 571.79978
RUN I-2 TABLE IT
P :(el=-6128, ¢2-512, S=00att=0;Pp:( 1l -1037.82, o2 - 114475, o7 - e att-T
F:k:sooo. att=0; P,M = 1827att = T. Lengths in N.M.
T = T4 hours n = 1001 m =20 k=5 )
x! trom (x! - x}) € -1 - [-x3)t=0 Input = x) (1), Output » [ x[ (@)1
tihes) x i) KANM) Bl x' e ) 2N be) S/
0 INPUT -6128.0000 5142.0000 0. -14025.023 58416.614 1i5.05342
OUTPUT -6128.0000 5142.0000 0. -14025.023 58416.614 115.05342
1.4 INPUT -55605.452 418383.03 560.45450 -4631.1272 55823.074 58.150387
OUTPUT -55605.452 418383.03 569.45450 -4631.1271 55823.074 58.150382
14.8 INPUT -85840.694 832606.95 943.59518 -3718.0885 56109.973 44.694204
OUTPUT -85840.694 832606.95 943.59519 -3718.0885 56109.973 44.694204
22.2 INPUT -112017.13 1248593.0 1245.0647 -3408.8099 56308.069 37.342397
OUTPUT -112017.13 1248593.0 1245.0647 -3408.8099 56308.069 37.342397
29.8 INPUT -136806.67 1665847.8 1501.9351 -3314.9355 56457420 32.352519
OUTPUT -136806.67 1665847.8 1501.9351 -3314.9355 56457.420 32.352500
37.0 INPUT -161342.21 2084091.8 1726.9583° -3329.8776 56577.718 28.628534
OUTPUT -161342.21 20840918 1726.9583 -3329.8776 S65T7.716 28.628534
44.4 INPUT -186251.08 2503152.9 1927.6972 -3411.2043 56679.635 25.749204
OUTPUT -186251.08 25031529 1927.6972 -3411.2943 56679.635 25.749204
51.8 INPUT -211946.46 2922923 .4 2109.8748 -3540.6340 56770.620 23.623911
OUTPYT -21:945 16 2923022.4 2109.8747 -3540.6341 56770620 2362384

OUTPUT

OUTPUT

OUTPUT

-238760.83
-238760.83

-267097.94
-267097.94

-298833.25
-298833.25

3343351.5
3343351.5

IT64487.4
3764487.4

4187403.4
4187403.4

2280.0763
2280.0763

2455.0451
2455.0451

3000.0000
3000.0000

-3714.6837
-3714.6837

-3964.2133
-3964.2133

-5416.0586
-5416.0586

56850.239
56859.239

56869.870
56969.870

58023.139
58023.139

22.665166
22.665156

26.254295
26.254295

564.26813
564.26813




RUN I-3

TAB

B: (€1= -5362, £2=4499.25, €3 =0)att =0; P:( o'= 1037.82, 4= -1144.75, 1% = -074.68) at t = T
PLE =7000, att=0; P;M = 1827 at t = T. Lengths in N. M.
T = T4 hours
x{i, frnrn(xa -xil}{t—'r}-(xél -xlz )t =0, INPUT

n = 1001

m = 20

k=3

» xj {t), OUTPUT «

f Uxg, )

tihes) PUCTR RANN.) FUTTR] () X NMShe) B/
-5362.0000 4499.2500 0 -15027.142 58552.191 122.58228
# OUTPUT  -3362.0000 4499.2500 0 -15027.142 58552.191 122.58228
7.407 PUT -55328.336 417634.10 580.55973 -4625.7715 55808.623 58.393653
OUTPUT  -35328.336 41763410 580.55973 -4625.7715 55808.623 58.393653
4.815 -85571.120 832266.95 955.83139 -3717.4297 56117.977 44,710857
Ao OUTPUT  -85871.120 832266.95 955.83139 -3717.4297 56117.977 44.710857
22222  INPUT -111783.06 1248760.5 1257.4364 -3411.7138 56323.587 37.290831
OUTPUT  -111783.06 12487605 1257.4364 -3411.7138 56323.587 37.290831
29.630  INPUT -136628.05 1666562.3 1514.0494 -3320.1429 56476.447 32.268353
OUTPUT  -136628.03 1666562.3 1514.0494 -3320.1429 56476.446 32.268353
37.037  INPUT -161232.78 2085373.6 1738.5932 -3336.6209 56598,627 28.523632
OUTPUT  -161232.78 20853736 1738.5932 -3336.6209 56598.627 28.523632
44.444  INPUT -186220.60 2505013.4 1938.6925 -3419.0849 56701.626 25.627369
OUTPUT  -186220.60 2505013.4 1938.6925 -3419.0848 56701.626 25.627369
51.852  INPUT -212001.86 2925369.6 21200834 -3549.0464 56793.257 23.483411
OUTPUT  -212001.86 2925360.6 21200834 -3549.0464 56793.257 23.483411
59.259  INPUT .-238906.71 3346387.9 2289.3217 -3723.4007 56882.325 22.497339
OUTPUT  -238906.71 3346387.9 2289.3217 -3723.4007 56882.325 22.497338
86.667  INPUT -267337.20 3768118.6 2463.0866 -3073.1046 56993.743 26.056053
OUTPUT  -267337.20 37681186 2463.0866 -3973.1045 56993.742 26.056052
74.000  INPUT -298833.25 4187403.4 2999,9999 -5413.5971 58046, 483 561,04537
OUTPUT  -298833.25 41874034 2999.9999 -5413.5968 58046.483 561.04527
N I-4 JABLE IX
Pp: (§'=-4596, £2=3856.5, £ = 0)att=0; P: (y'=1037.82, 9% = -1144.75, 7 3= -974.68) at t = T
P\E = 6000, att =0; P;M = 1827 at t = T. Lengths in N. M.
T = T4 hours n = 1001 k=5
xp from (xg -x) (- T) - (xg -xj)t=0. INPUT'= xj ), OUTPUT« Iy [xf ()]
tihrs) wm) NN BN ' (nw/ar ) KN /w) B0/
0.0 INPUT -4596.0000 3856.5000 0 -16270.940 58721.743 131.90968
OUTPUT -4596,0000 3856.5000 0 -16271.012 58721.750 131.91022
7.4 INPUT -54968.276 415984.97 591.54361 -4621.6904 55792.961 58.672862
OUTPUT -54968.278 415984.97 591.54364 -4621.6991 55792.957 58.672989
14.8 INPUT -85170.069 830192.68 967.44899 -37T18.4104 56125.668 44.760118
OUTPUT -85170.069 830192.68 967.44003 -3718.4117 56125.666 44.760159
22.2 INPUT -111375.65 1246359.6 1268.8179 -3415.7904 56339059 37.269355
OUTPUT -111375.65 12463505 1268.8179 -3415.7889 56339.059 37.269361
29.6 INPUT -136232.86 1663873.0 1524.8751 -3325.9130 56495.551 32.212148
OUTPUT -136232.86. 1663873.0 1524.8752 -3325.9101 56495.551 32212136
37.0 INPUT -160859.33 2082414.7 1748.6905 -3343.2665 56619.671 28.444716
OUTPUT -160859.33 2082414.7 1748.6905 -33432627 56619.672 28.444693
4.4 INPUT -185872.83 2501795.0 1947.9322 -3426.0311 56723.759 25.528422
OUTPUT -185872.82 2501795.0 1947.9322 -3426.0268 56723.760 25.528392
51.8 INPUT -211679.57 2921897.0 2128.3212 -3555.8533 56815.976 23.358602
OUTPUT -211619.57 29218970 21283212 -3555.3488 58815.977 23.358563
59.2 INPUT -238605.46 3342663.4 2296.2998 -3729.4117 56905.258 22.318764
OUTPUT -238605.46 33426634 2296,2998 -3729.4068 56905.259 22.318723
66.6 INPUT -267044.55 3764141.3 2467.9732 -3976.5213 57016.240 25.646098
OUTPUT -267044.55 37641413 2467.9733 -3976.5161 57016.241 25.646036
74.0 INPUT -298833.26 4187403.4 2999,9999 -5411.1277 58071.026 557.63267
OUTPUT -298833.26 41874034 2999.9999 -5411.1205 58071.024 557.63162
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37.290831

32.268353
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25.646036
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RUN I-5

P, (¢! = -3830, 2

1
T = 74 hours

«3213.75, €32 0; Py: (o' =1037.82, 97 = -1144.75, #
P\E=5000, att=0; F;M=1827att =T. Lengths in N.M.
n= 1001

m=20

k=6

TAB I

3

=-0T4.68) att =T

xp (t) obtained by “stretching” solution I-4. INPUT » xt‘, (), OUTPUT = 1| Lx{” )

tihrs) ) 2NN, B X (i ) K/ B
0 INPUT -3830.0000 3213.7500 0 -17878.960 58948.287 143.87465
OUTPUT -3830.0000 3213.7500 0 -17878.971 58948280 143.87478
7.407 INPUT -54654.098 415068.97 604.30816 -4612.1998 55777.633 58.905854
OUTPUT -54654.100 415068.98 604.30819 -4612.2019 55777.632 58.905879
14.815  INPUT -84849.252 829690,24 891.27299 -3717,1650 56135.200 44.768551
OUTPUT -84849.254 829690.24 891.27302 -3717.1652 56135.200 44.76657T9
22.222  INPUT -111090.30 1246379.3 1282.6960 -3419.1074 56356.868 37.205978
OUTPUT -111090.30 1246379.3 1282.6961 -3419.1071 56356.868 37.205979
29.630  INPUT -136007.87 1664458.5 1538.4011 -3331.9612 56517.227 32.114394
OUTPUT -136007.87 1664458.5 1538.4012 -3331.9606 56517.228 32114391
37.037  INPUT -160710.72 2083588.2 1761.6298 -3351.0650 56643.431 28.324726
OUTPUT -160710.73 2083588.2 1761.6298 -3351.0628 56643.431 28.324721
4.444  INPUT -185811.53 2503569.1 1960.1128 -3434.9617 56748.711 25.389861
OUTPUT -185811.53 2503569.1 19601129 -3434.9608 56748.711 25.389855
51.852 INPUT -211713.08 2924279.3 2139.5826 -3565.4633 56841.632 23.199300
OUTPUT  -211713.03 2924279.3 2139.5827 -3565.4624 56841.633 23.199293
59.259  INPUT -238738.33 3345658.7 2306.4433 -3739.2981 56931.380 22.127966
OUTPUT -238738.34 3345658.7 2306, 4434 -3739.20T1 56931.380 22.127957
66.667 INPUT -267279.11 3767754.2 2476.6962 -3986.4200 57043.115 25.400632
OUTPUT -267279.11 3767754.2 2476.6963 -3986.4190 57043.115 25.408619
74.000  INPUT -298833.26 4187403.4 2999.9998 -5408.7065 58097.143 554.01546
OUTPUT -298833.26 41874034 2999.9998 -5408.7040 58007143 554,01521
RUN I-6 TABLE T
Py: (¢! = -3084, £-25112, S -0)att=0, Py (1! =1097.82, 4% < -114475, 1 - 0GB 2t - T
PE = 4000, att = 0; pz_ua 1827 att = T. Lengths in N.M.
T = 74 hours n = 1001 m =20 k=6
%g (t) obtained by “stretching” solution I-4. INPUT = xq ,(t), OUTPUT = [, Tx% K@
thrs) X (MM (NM.) BN (/) i) I/
0 INPUT -3064.0000 2571.2000 0 -20083.544 59286.342 159.97450
OUTPUT -3064.0000 2571.2000 0 -20087.140 50286.690 160.00239
7.407  INPUT -54269.601 413615, 14 617.80850 -4601.8372 55761.124 59.158068
OUTPUT  -54270.141 413615.03 617.81460 -4602.1304 55760.993 59.163343
14.815 INPUT -84420.298 828234.43 995.58461 -3716.8632 56145.208 44787818
OUTPUT  -84429.913 828234.28 995.50208 -3716.8973 56145.261 44.789030
22.222 INPUT -110686.14 1245035.6 1296.8556 -3423.3642 56375.804 37.153809
OUTPUT  -110686.74 12450354 1296.8634 -3423.3001 56375.810 37.153767
29.630  INPUT -135645.84 1663272.2 1552.0254 -3338.8378 56540.314 32.025281
OUTPUT  -135646.39 1663272.0 1552.0329 -3338.7239 56540.344 32.024592
37.037 INPUT -160405.77 2082582.0 1774.4992 -3359.4504 56668.752 28.211181
OUTPUT  -160406.25 2082581.8 1774.5062 -3350.3167 56668.796 28.210118
4.444  INPUT -185572.20 2502755.6 1972.0629 -3444.1899 56775.300 25,255168
OUTPUT  -185572.60 2502755.5 1972.0693 -3444.0296 56775.353 25.253871
51.852 INPUT -211543.49 2923665.6 2150.4462 -3574.9909 56868.934 23.039082
OUTPUT  -211543.80 2923665.5 2150.4519 -3574.8191 54868.991 23.037614
59.250 INPUT -238638.74 3345248.8 2315,9709 -3748.5428 56950.044 21.921144
OUTPUT  -238638.96 3345248.8 2315.9757 -3748.3624 56959.101 21.919473
86.667 INPUT -267243.87 3767549.8 2484,2668 -3994.2339 57070.907 25.049298
OUTPUT  -267243.98 3767549.7 2484.2705 -3994.0438 57070.957 25.046954
74.000  INPUT -298833.28 4187403.3 2999.9997 -5406.3556 58125.353 55007819
OUTPUT  -298833.28 41874033 2999.9997 -5406.1118 58125.322 550.04768
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RUN I-7T

T = T4 hours

et 2,
P: (¢! a2840, 2.2

2
n = 100}

TABLE ¥IT

k=9

€3 0att=0; Py (o =1007.82, 17« -114475, 17 - 97468 att =T
P\E = 3700, att = 0; P,M 2 1827 att = T. Lengths in N.M.

x§(t) obtained by "stretching" solution [-6.  INPUT = % i ®, OUTPUT » I xf,’k i

tihrs) X (MM 2N Bl T K w) i
0 INPUT | -2840,0000 2380.0000 0 -20910.594 59418.650 165.84133
OUTPUT  -2840.0000 2380.0000 0 -20910.594 59418.650 165.84133
7.407  INPUT -54146.154 413149.95 622.02038 -4598.1631 55756.013 59.232990
OUTPUT  -54146.154 413149.95 622.02037 -4598,1631 55756.013 59.232990
14.815  INPUT -84293.420 827769.31 1000.0331 -3716.4633 56148.571 44.793782
OUTPUT  -84203.420 827769.31 1000,0331 -3716.4633 56148.571 44.793782
22.222  INPUT -110555.27 1244606.5 1301.2564 -3424.7403 56381.872 31.137915
OUTPUT  -110555.27 1244608.5 1301.2564 -3424.7403 56381.372 37.131915
29.630  INPUT -135528.60 1662893.4 1556.2635 -3341.0647 56547.696 31.996239
OUTPUT  -135528.60 16628934 1556.2635 -3341.0847 56547.696 31.998239
37.037  INPUT -160307.01 20822608 1778.5081 -3362.1748 56676.843 28.176674
OUTPUT  -160307.01 2082250.8 1778.5081 -3362.1748 56676.843 28.176674
4.444  INPUT -185494.66 2502495.9 1975.7921 -3447.1718 56783.794 25.214130
OUTPUT  -185494.66 2502495.9 1975.7521 34471718 56763.794 25.214130
51.852  INPUT -211488.49 2923169.3 2153.8439 -3578.0635 56877.654 22.990098
OUTPUT  -211488.49 2923469.8 2153.8439 -3578.0685 56877.854 22990098
59.258  INPUT -238606.35 3345118.1 2318.9591 -3751.5310 56967.877 21.857579
OUTPUT  -238606.35 3345118.1 2318.9591 -3751.5310 56967.877 21.857579
66.667  INPUT -267232.30 3767464.5 2486.6506 -3996.7689 57079.773 24.937781
OUTPUT  -267232.30 3767484.6 2486.6506 -3996.7689 57079.713 24.937181
74000  INPUT -298833.29 4187403.3 2999.9995 -5405.6538 58134.306 548.82671
OUTPUT  -298833.29 41874033 2999.9995 -5405.6538 58134.308 548.82671
RUN I TABLE YIIT
B:(e!=-2840, €2-2380, ¢3-0)att=0; Py (v} =531.82506; 17 -58074854, 1. _igp.eTE2l)att =T
PE=3700, att =0; PM=940att=T. Lengths in N.M.
T = T4 hours n = 1001 m=6 k=10
x} trom (x} - x}) ¢ - T - xh-x})t =0, mPUT. x}  ®, ouTPUT. rixl 01
tlhes) ) 2NN BN X iuhe) KN/ Cinan
0 INPUT -2840.0000 2380.0000 0 -20908.927 59439.962 200,69884
OUTPUT  -2840.0000 2380.0000 0 -20908.927 59439.962 200.69884
1.4 INPUT -54138.279 412824.95 752.45050 -4603.1553 55763857 71.738703
OUTPUT  -54138.279 412824.95 752.45050 -4603.1553 55763.857 T1.136703
14.8 INPUT -34286.965 827079.05 1209.7826 -3720.1113 56154.359 54.242373
OUTPUT  -84286.965 827079.05 1209.7828 -3720.1113 56154.359 54.242373
22.2 INPUT -110545.94 1243538.0 1574.1153 -3427.4541 56386604 44,952437
OUTPUT  -110545.94 1243538.0 1574.1153 -3427.4541  56386.604 44.952437
208 INPUT -135511.51 1661439.9 1882.3509 -3343.0244 56551,733 38.695650
OUTPUT  -135511.51 1661439.9 1882.3509 -3343.0244 56551.733 38.695650
37.0 INPUT -160277.20 2080414.8 2150.6238 -3363.4881 56680.363 34008223
OUTPUT  -1602TT.20 2080414.8 2150.6238 -3363.4881 566880.363 34009223
4.4 INPUT -185447.25 2500254.2 2388,0054 -3447.9241 56786.902 30.309783
OUTPUT  -185447.25 2500254.2 2388.0954 -3447.9241 56786.902 30.309783
51.8 INPUT -211418.88 2920828.3 2601.0626 -3578.3652 $6880.414 27.374520
OUTPUT  -211418.88 2920828.8 2601.0686 -3578.3652 56880414 27.374520
59.2 INPUT -238510.78 3342074.7 2795.4028 ~3751.6145 56970.317 25.349820
OUTPUT  -238510.78 3342074.7 2795.4028 -3751.6145 56970.317 25.349829
86.6 INPUT -267110.87 3764035.7 2082.4325 -3997.9376 57081.885 26.203908
OUTPUT  -267110.87 3764035.7 2982.4325 -3997.9376 57081.885 26.203909
74.0 INPUT -299330.28 4187958.3 3474.9990 -6308,4840 58861.599 911.60583
OUTPUT  -299339.28 4187958.3 3473.9999 -8308.4840 58861.599 91160593

i
-

37.00

44«

S1.&

37.0

58.2

74.0




(M. M/wr)

5.84133
5.84133

232990
.232090

193782
793782

137915
137915

.998239
998239

(176874
176674

214130
214130

.980098
590098

.B5T579
857579

937781
937781

8.82671
8.826T1

————

L)

).60884
).69884

738703
736703

242373
242373

952437
952437

695650
695650

009223
.009223

309783
300783

374520
374520

.349829
340829

.203909
203909

1.60593
1.680593

JABLEIX

PE=7000 att =0 PoM = 182Tatt = T. Lengths in N. M.

Py (el e -5362, 622449025 €32 0)ate=o; Py (ol =1037.82, 42 - <1144.75, 43 - 0T46B) att =T

3 E = T4 hours n = 1001 m =20 k=35 Number of Digits carried = 8, 12
-4 ucrrom(ue-xll)(:»-'l‘}-(xél-x‘z):=D
Tim No. of Digits POTTT] TR Binu.) TV ) (M) /i)
0 8 -5362.0000 4499.2500 0 -15027. 58551.
e 12 -5362.0000 4459.2500 0 -15027. 58552, ig".g
B 7.407 8 -55328. 417631, 580.9 -4625.6 55808.3 58.42
: 12 -55328. 417634, 580.55 -4625.7 55808.62 58.383
= 14.815 8 -B5570. 832262, 956.4 -3717.3 56117.78 4.T3T
- 12 -8557T0. 832266, 955.83 -3717.42 56117.97 44.7108
- 22.222 8 -11178*. 124854, 1258.1 -3411.6 56323.42 37.313
-1 12 ~11178%, 1248760, 1257.43 -3411.71 56323.587 37.2908
S 29.630 8 -13662*%, 1666554. 1514.9 -3320.1 56476.30 32.288
B 12 -136628, 1666562, 1514.04 -3320.1 56476.44 32.2683
o 37.037 8 -16123*, 2085364, 1739.6 -3336.8 56598.49 28.541
4 12 -161232. 2085373, 1738.59 -3336.6 56598.62 28.5236
3 44,444 3 -186219. 2505001. 1939.3 -3419.0 56701.50 25.642
4 12 - 186220, 2505013, 1938.69 -3419.0 56701.62 25.627
51.852 8 -212001. 2925355, 21213 -3549.0 56793.13 23.496
5 12 -212001. 2925369.6 2120.08 -3549.0 56793.25 23.483
59.259 8 -238906. 3346371, 2290.6 -3723.4 56882.21 22.507
12 -238906. 3346387.9 2289.32 -3723.4 56882.32 22,497
86,667 8 -267337. 3768099, 2464.5 -3973 - 56993.65 26.056
- 12 -267337. 3768118.6 2463.08 -3973.1 56983.74 26.056
E . 74.000 3 -298833.25 4187403.4 2999.9999 - -5407. 58045.6 558.
- 12 -298833.25 4187403.4 2999.9999 -5413.6 58046.48 S6L.04
3 JABLE X
% Pu(el=-4506, ¢%-30565 ¢ <0)are=0; Py (v)=1037.82, o2 = 114475, 2% - OB att-T
=z P E=6000, att=0; P)M = 1827att = T. Lengths in N.M.
' T = 74 hours n = 1001, 751, 501, 251 m =20 k=5
Xy from (xg-x}) (t - T - (xf-x}) t=0
i Tima . xliww) Rinu.) Binw) X (/b ) Zowm)  Ciwnn
1001 -4596.0000 3856.5000 0 -16271. 587217 131.91
b 0 751 -4596.0000 1856.5000 0 -16294. 58751.1 131.84
g 501 -4506.0000 3856.5000 0 -16360, 58833.3 131.66
- 251 -4596.0000 3856.5000 0 -16683. 59241.0 130,
1001 -54968.2 415984.9 591,543 -4621.6 55792.9 58.672
i T.4 751 -54965.2 415974.4 591.787 -4621.6 55792.8 58.690
501 -54956.6 415945.2 592.459 -4621.6 55792.4 58.737
: 251 -54913.2 415808.9 595.641 -4621.6 55790.7 58,968
: 1001 -85170. 830192.6 967.449 -3718.41 56125.66 44.7601
3 14.81 751 -85166. 830182.1 967.793 -3718.42 56125.74 44,7718
501 -85158. 830153.0 968.746 -3718.47 56125.95 44.8035
251 -85113. 830016.4 973.285 -3718.78 56126.93 44.9581
2 1001 -160869. 2082414. 1748.60 -3343.26 56619.67 28,4446
: 37.0 751 -160857. 2082407, 1749.21 -3343.33 56619.86 28.4508
b 501 -160851. 2082387, 1750.68 -3343.52 56620.39 28.46T9
- 251 -160821. 2082295, 1757.69 -3344.45 56622.89 28.5505
a3
1001 -238905.4 3342663.4 2296.29 -3729.40 56905.25 22,3187
59.2 751 -238604.9 3342660.8 2296.92 -3729.48 56905.46 223114
501 -238603.4 3342653.7 4298.67 -3729.68 56606.04 225285
251 -238506.3 3342620.4 5 56908.77
1001 -267044.5 3764141.3 2467.97 -3976.5 57016.24 25.546
86.6 751 -267044.5 3764140.3 2468.61 -3976.5 57016.45 25.645
501 -267044.4 3764137.4 2470.38 -3976.77 57017.03 25.643
-267044.4 37641242 2478.88 -3971.70 57019.79
1001 -298833.26 4187403.4 2909.9999 -5411.1 58071.02 557.63
74.9 751 -298833.26 4187403.4 2999.9999 -5412.9 5B073.93 560.44
501 -298833.26 4187403.4 2999.9999 -5418,1 58082.10 568.35

-298833.26

4187403.4

-5444.9 58123.45

s g S

AP S A7 Y L S
-':vaanqq!r




JABLE XTI

2 3

= -1144.75, 7% = -974.68) at t =T

FLLI_( {1 = -4598, ..'z = 3858.5, {s =0)att=0; Py: ( 2* =1037.82, »

PlE-GOOOatl.-D; 1’2_M=1I12'Tatt=‘l'. Lengths in N. M.
T = T4 hours n = 1001 m =86, 20 k=5

xg [rom(xlij -xii)(t-"n-(xlu -xizltao

o) 2iwu.) Bl /v ) X2 IN /)

-4596.0000 3856.5000 0 -162€1. 58721.7
-4596.0000 3856.5000 0 -16270.940 58721.742

-54968.27 415984.97 591.5436 -4621.69 55792.95
-54968.278 415984.97 591.5436 -4621.6904 55792.960

-85170.07 830192.68 967.4490 -3718.41 56125.66
-85170.071 830182.68 967.4490 -3718.4103 56125.668

-111375.65 1246359, 1268.8179 -3415.78 56339.059
-111375.85 1246359.5 1268.817 -3415.7903 56339.059

-160859.33 2082414.7 1748.6905 -3343.26 56619.67
-160859.33 2082414.7 1748.690 -3343.2665 56619.671

-211679.57 2021897.0 2128.3212 -3555.84 56815.97
-211679.57 2921897.0 2128.321 -3555.8532 56815.976

-238605.46 3342663.4 2296.2998 -3729.40 56905.25
-238605,48 3342663.4 2296.299 -3729.4117 56905.258

-267044.55 3764141.3 2467.973 -3976.51 57016.24
~267044.55 3764141.3 2467.973 -3976.5212 57016.240

-208833.26 4187403.4 2999,9999 -5411.12 58971.02
-208833.26 4187403.4 2999,9999 -5411.127 58071.025

N/

131.910
131.90968

58.672
58.67286

44,7601
44.76011

37.26936
37.269355

28,4446
28.444716

23,3585
23.358602

22.3187
22.318763

25.6460
25,646098

557.63
557.6325

JABLE XL

Py: ( ¢l= 3030, 622321375, 3= 0)ate=0; Py (0! -1037.82, 0% = -114475, o0 - 9TaEB) ALt T
PE =5000, att=0; P,M = 1827 att = T. Lengths in N.M.

T = T4 hours n = 1001 m = 20 k=8
x#.tt]nwinedfm(xiu-xil)(t-'n-(xio-xlz)t-Oardby"uuetching"schonl-i.

Time T PUTTN (M) Bina) K Nsbe ) KN/ )

0 "6000 N. M. " -3830.0000 3213.7500 0 -17878.9 58948.28
"ST. LINE" -3830.0000 3213.7500 0 -18306.274 58993.237

"6000 N.M." -54654.10 415068.9 604.3081 -4612.20 55T77.63
"ST. LINE" -54688.602 415062.37 604.64098 -4655.3335 55759.239

"6000 N. M. " -84848.25 829690.24 981.2730 -3717.165 56135.209
"ST. LINE" -84887.414 829680.92 981.65608 -3722.9121 56129.499

"6000 N. M. " -111080.30 1246379.3 1282.696 -3419.107 56356.868
"ST. LINE" -111126.85 . 1246369.5 1283.0700 -3410.6489 56357.218

"6000 N. M." -136007.87 166458.5 1538.401 -3331.960 56517.22
"ST. LINE" -136040.77 1664449.2 1538.7431 -3316.3015 56520.985

"6000 N. M. " -160710.7 2083588.2 1761.6298 -3351.06 56643.431
"ST. LINE" -160739.00 2083580.0 1761.9296 -3331.2594 56649.231

"6000 N.M." -185811.53 2503568.1 1860.112 -3434.96 56748.711
"ST. LINE" -185834.65 2503562.4 1960.3656 -3412.5989 56755.715

"6000 N. M. " -211713.03 2924279.3 2139.582 -3565.46 56841.63
"ST. LINE" -211730.69 2924274.2 2139.7862 -3541.4248 56849.229

6000 N. M. " -238738.3 3345658.7 23006.443 -3739.29 $8031.380
"S8T. LINE" -238750.35 3345655.3 2306.5968 -3714.0100 56938.972

"6000 N.M." -267279.11 3767754.2 2476.696 -3986.41 57043.115
"ST. LINE" -267285.32 3767752.5 2476,7983 -3959.6398 57049.616

"6000 N.M." -298833.26 4187403.4 2999.9999 -5408.70 58097.143
"ST. LINE" -298833.26 4187403.4 2999,9999 -5373.3810 58091.865

i)

143.874
147.14138

58.9058
59.535976

44,76657
44.954047

37.20597
37.216000

32.11439
32.032863

28.32472
28.190319

25.38985
25,222352

23,1992
23.007417

22.137%
21.906243
25.40868
25.085702

554.015
549.38024




Cinw/n)

131.910
131.90968

58.672
58.67286

44,7601
44.76011

37.26836
37.268355

28,4446
28.444716

23.3585
23.358602

22.3187
22,318763

25.6460
25.646098

557.63
557.6325

B

143.874
147.14138

58.9058
58.535976

44.76657
44.954047

37.20597
37.216000

32.11439
32.032863

28.32472
28.190319

25.38985
25.222352

23.1992
23.007417

22.1279
21,906243

25.4086
25,085702

554.015
549.38024
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