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Abstraet — Zusammenfassung — Résumé

Interplanetary Trajectories with Excess Energy. Several families of interplanetary
trajectories have been analyzed in an effort to reduce total round-trip time with the
least excess energy. Veloecity increments Av were calculated on the basis of a round
trip from a ecircular orbit near the Earth to a circular orbit near the destination.
On this basis, the round trip to Venus was reduced from the least-energy value of
760 days with a total dv of 8.22 miles per second to a round-trip time of 400 days
with a total Adv of 9.7 miles per second. For the Mars journey, the round-trip time
was reduced from the minimum-energy value of 973 days with total 4v of 6.96 miles
per second to a round-trip time of 400 days with a total dv of 14.9 miles per second.
These reductions, which were the best found in the range of moderate dv, correspond
to zero waiting time at the destination planets. If the waiting time is increased mode-
rately, or if further reductions in travel time are desired, considerably larger total
velocity increments must be employed. Reduction in trip time to about 180 days
requires a total Jv of 13.6 miles per second for the Venus trip, and about 29 miles
per second for the Mars trip. In general, it is concluded that reductions in round-trip
time to Venus are achievable with much smaller velocity increments than are similar
reductions in round-trip time to Mars.

Interplanetarische Reiserouten mit U'berschuBenergie. Es wurden einige Familien
interplanetarischer Reiserouten in dem Bemiihen analysiert, die Gesamtzeit fiir die
Rundreise mit geringstem Energieverbrauch zu reduzieren. Die Geschwindigkeits-
inkremente dv wurden auf der Grundlage einer Rundreise berechnet, die ihren Anfang
von einer erdnahen Kreisbahn nimmt und zu einer Kreisbahn in der Nihe des Ziel-
planeten fithrt. Mit solchen Annahmen wurde die Rundreisezeit zur Venus von
760 Tagen bei geringstem Energieverbrauch mit einem Gesamt-Av von 8,22 Meilen/sec
auf eine Rundreisezeit von 400 Tagen mit einem Gesamt-2» von 9,7 Meilen/sec ver-
kiirzt. Fiir die Marsreise wurde die Rundreisezeit von 973 Tagen bei geringstem
Energieaufwand mit einem Gesamt-4v von 6,96 Meilen/sec auf eine Rundreisezeit
von 400 Tagen mit einem Gesamt-Adv von 14,9 Meilen/sec verkiirzt. Diese Verkiirzun-
gen, welche die besten Ergebnisse im Bereich von milBigem v waren, entsprechen
einer Wartezeit von null auf den Zielplaneten. Wenn die Wartezeit miBig erhiht
wird, oder wenn weitere Verringerungen der heisezeit erwluscit sind, mussen be-
trichtlich gréolere Gesamtgeschwindigkeitsinkremente beniitzt werden. Die Verkiir-
zung der Reisezeit auf ungefiahr 180 Tage erfordert ein Gesamt-dv von 13,6 Meilen,sec
fiir die Reise zur Venus und von ungefihr 29 Meilen/sec fiir die Fahrt zum Mars,
Im allgemeinen ergibt sich die SchluBfolgerung, daB Verringerungen der Rundreise-
zeit zur Venus mit viel kleineren Geschwindigkeitsinkrementen erreichbar sind als
ihnliche Verkiirzungen der Rundreisezeit zum Mars.

! Chief, Advanced Propulsion Division, National Aeronautics and Space Adminis-
tration, Lewis Research Center, 21000 Brookpark Road, Cleveland 35, Ohio, U.S.A.
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Trajectoires interplanétaires avee excédent d’énergie. Plusieurs familles de trajec-
toires interplanétaires ont été analysées dans le but de réduire la durée totale du
voyage avec un minimum d’excédent d’énergie. Les accroissements de vitesse .iv
ont été calculés pour un aller-retour entre deux orbites circulaires, 'une autour
de la terre, 'autre autour de la planéte de destination. Dans le cas de Venus les 760
jours et 8.22 miles par seconds de Jv, correspondant i la dépense énergétique mini-
mum, ont été réduits & 400 jours pour 9.7 miles par seconde. Dans le cas de Mars
on peut passer de 973 jours et 6.96 miles par seconde & 400 jours et 14.9 miles par
seconde. Ces réductions, les plus grandes trouvées dans la zone des dv modérés,
correspondent a un temps d’attente nul aux planétes de destination. S’il existe un
temps d’attente modéré, ou si l'on veut réduire la durée davantage, il faut des ac-
croissements de vitesse beaucoup plus considérables. Pour Venus la réduction de
la durée du voyage 4 180 jours demande 13.6 miles par seconde et 29 miles par seconde
dans le cas de Mars. En conclusion, les réductions de temps pour Venus sont réali-
sables avec des accroissements de vitesse beaucoup plus modérés que pour Mars.

Introduction

One of the discouraging features of manned interplanetary travel is the
length of time required for the journeys if minimum-energy transfer orbits are
followed. A large portion of this time, for journeys to the near planets, is spent
at the destination planet waiting for the Earth and the planet to move into the
proper relative position so that the spaceship and the Earth will arrive at the
same point at about the same time. Because of this conjugation problem, simple
reductions in transit time do not necessarily produce reductions in total round-
trip time. Such reductions may increase the waiting time by an amount equal
to or even greater than the saving in transit time. To determine how total trip
time can be reduced with the least excess energy requires systematic calculation
of the time-components of the trip as function of the velocity increments for
several promising families of trajectories. Results of such an investigation are
presented hereinl.

Symbols
A ++e(V, 20— Vo2, egs. | v., o reference circular velocity, v/ u/r,
(21) and (23) v, hyperbolic velocity
E  total energy per unit mass v, velocity at apsis of trajectory
G universal gravitational constant, a  local angle of trajectory relative to
7.28 x 10—21, mile®/lb-sec? circumferential direction
h  angular momentum per unit mass € eccentricity of trajectory
M  mass of body producing gravity field @ 6  angular distance from apsis
r distance from center of body pro- = §  anpgular velocity
ducing gravity field By a,n,;_;;ulm' distance along trajectory
ry  reference distance between orbits of origin and
7, surface radius of planet destination
¢ time u  gravitational constant for field-pro-
V' nondimensional velocity v/v,,, ducing body, GM
Vo mmdilmensionul velocity at apsis of 0 nondimensional distance from center
trajectory i of body producing gravity fleld,
v velocity o ! /7y
v, ecircular veloeity, \/ u/fr T nondimensional time, (v, ,/r,)¢

! Another analysis of interplanetary orbits as function of energy was presented
recently in [1]. This analysis, although very comprehensive and elegant for the one-
way trip, did not consider the roundtrip, or conjugation problem. It differs also from
the present analysis in that results were obtained in terms of heliocentric parameters,
so that considerably more work is required to determine veloeity increments required
at satellite stations or at planet surfaces.

IX. I.A.F.- Kongrel
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Trajeetory Equations

The trajectories to be considered are all segments of conic sections with the
sun at one focus. This implies that third- or fourth-body interaction effects are
neglected, and that no thrust is applied except during brief periods at the
beginning and end of the trajectory.

The equation for the conic-section trajectory followed in a central gravita-
tional field is (see, e.g., [2])

r:i(l—;—acosﬂ)_l (1)
- i
where the eccentricity & is
/ 2 Eh* .
e=l14——. 2
XS | LS5 (2)
va The angle 6 (Fig. 1) is measured from the apsis closest to the
Fig. 1 gravitational mass M. For generality, it is convenient to

nondimensionlize the trajectory equation in terms of the
apsis distance r,, and the circular velocity at ry, v, ,, where

{ -u
v, = 1 = (3)
If we denote rjr, by ¢ and vfv,, by V, and note that
h=ryv, (4)
and
,2 3
v B L =
B= 2 r = 2 To (5)
the trajectory equation becomes
o=V, (1+¢cosf)? (6)
where
oo T 7
Vo= Voo (7)
£ = \.,«_-1 -:-ng {'\_-'02___2)= : (I7u'1__1)‘ (S)

It is evident from eq. (8) that ¥,* <2 corresponds to elliptic trajectories, V=2
to parabolic trajectories, and V,*> 2 to hyperbolic trajectories.

It is convenient to keep only the plus sign in the expression for eccentricity,
because eq. (6) then yields p=1 for 6 =0; consequently, either apsis of an ellipse
can be regarded as the reference point or origin. Thus. if ¥ is less than unity
(velocity at r, less than the circular velocity), o is maximum at =0; whereas
if V, is greater than unity, o is minimum at f# =0. The trajectory equation then
becomes

V.2

P 0 i
= T (Vf=T1)cost 9)

The value of 9 at § =z is the maximum or minimum radius ratio, depending
on whether V* is less than or greater than unity:
];' 2

2=Vq"
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Trajectory Variables as Function of Time

In order to calculate excess-energy trajectories, it is necessary to know the
coordinates ¢ and 0, the velocity ratio V, and the angle of the trajectory relative
to the circumferential direction a, as functions of time.

r

x ; : : ; /
The velocity ratio ¥V is obtained in terms of ¢ and ¥, f;.\’:r-..r_‘_gﬂ-frdr
by means of the energy eq. (5): o .

v / ad

. . 4 0
H:Vuz__z(l—?) (11) Fig. 2

The trajectory angle relative to the circumferential direction is obtained
from the relation (see Fig. 2)

awtan—l%— =tan—1 %ﬁ . (12)
From eq. (9), Qd;f, = 3 _:.IIU:";E f;tgsf} (13)
cos f = % (14)
sin 6= WVZQV— 5 Ve (Ve —2)+20— Vo (15)

Consequently, in terms of ¥, and p,
pad =ta_na:i% VE(Ve—2) 129 —7y (16)

where the plus is used for V,> 1 and minus for ¥V, <1. The angular distance
can be calculated from eq. (14). It is therefore necessary only to calculate p as
function of time for various values of ¥ in order to obtain all necessary trajectory
variables as functions of time.
The variation of ¢ with time is obtained by integration of the equation ex-
pressing conservation of angular momentum:
, df
arn

To express time in convenient nondimensional form, let

=h=constant =r, v,. (17)

T=—21t (18)

Then eq. (17) becomes

(19)

(20)

where the plus is used for V' 2>1 (2.>2;) and the minus for V2 <1 (2. <n,).

The integrals of eq. (20), from o, =1 to g,=0, are as follows:
For V?>2 (hyperbolic trajectories):

A 1

o W PP i
VIR T wa—oy" | == —— =
For V=2 (parabolic trajectory):
— {0 3 \
7= »-2@—-1)(- - (22)
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in which the plus is used for ¥V ?>1 and the minus for V,*<1.
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Distance ratio, p = r/ry

W. E. MOECKEL:

The trajectories o against T are plotted in Fig. 3 for values of V? from 0.2
to 3.0. The local velocity ratio, the trajectory angle a, and the angular
distance f, are plotted as function of ¢ in Figs. 4, 5, and 6, respectively. These
curves are general for any central gravitational field.
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3

" V,? from 0.2 i Entering and Leaving Satellite Orbits
the angular ]
ctively. These

In order to provide a common basis for comparisons of excess-energy trajec-
tories, the velocity impulses required will be referred to a standard mission,
consisting of a round trip from a circular satellite orbit having a radius 1.1 times
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Fig. 6. Angular distance from origin of trajectory
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Table I. Data on

PIMHEL . coomsmwommimanyvomm mosmscis f Sun Mercury Venus Earth
SYIAbol wovessssmmam s o 7 2 o
Mean distance from sun, miles ... | — 36 x 108 67.2x 10% | 92.9 x 108
Mean orbital velocity, miles/sec — 29.7 21.7 18.5
Mean angular orbital veloeity,
deg/day: oo prnnerisnns — 4.09 1.602 0.986
Sideral period, days............. — 88.0 224.7 365.26
Rotational period, days ......... | 24.65 to 33.3 88.0 30(7) 0.998
Eccentricity of orbit ............ ! — 0.206 .00681 0.0167
Inclination of equator to orbit,
deg .t 7.175 — — 23.45
Inclination of orbit to ecliptie, (to ecliptic)
deg . innusiaingises e ! — 7.0 3.395 0
Masg, Ib ..ouvernensannnnennnnss 4.35 x 103 0.725 x 10*  10.65 x 103 13.19 x 10*
Density (water=1.00) .......... 1.41 5.46 5.06 5.52
Force constant, u= GM,
mileadfeect . Coasnannea 3.17 x 1010 5.28 x 108  7.75x 10*  9.60 x 10*
Solar radiation intensity (@& =1) — 6.7 1.9 1.0
Mean diameter, miles ........... 864,000 3010 7610 7918
Oblateness (a—b)/a ............. 0 0 ‘0 0.00337
Gravity at surface, ft/see® ....... | 897.0 123 28.2 32.2
Escape veloeity at surface,
TRHOBIBOE iainmes AT | 383.0 2.65 6.38 6.97
Satellite velocity at surface,
milesfsec ...... ... i, 271.0 1.87 4.51 4.93
Sun’s gravity at planet’s orbit,
— 0.129 0.0371 0.0194
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the Solar System
!
I Mars Jupiter Saturn Uranus , Neptune Pluto Moon
(relative
3 | b ! B) w e | to Earth)
| 141.5 x 108 | 483 x 108 886 x 108 1783 x 105 | 2791 x 105 | 3671 x 108 | 23.9 x 104
15.0 8.11 5.96 4.22 3.37 2.94 | 0.636
0.524 0.083 0.0335 0.0117 0.006 0.004_ 13.17
\ 687.0 4332.0 10,759 30,700 60,200 90,800 27.32
: 1.027 0.413 0.431 0.448 0.666 - 27.32
0.0933 0.0484 0.0558 0.0471 0.0086 0.249 0.0549
i
| 25.20 3.115 26.745 98.0 29.0 - 6.678
:l 1.85 1.307 2.492 0.772 1.773 17.315 5.141
T.41 x 103 4150 x 102 1240 x 10*#* | 190 x 1034 225 x 1024 12.1 x 10% | 0.162 x 1024
_% 4.12 1.33 0.71 1.56 2.47 2 3.33
1.026 x 10* | 3.02 x 107  9.03 x 108 1.38 x 10  1.64 < 108 8.8 x 104 1.18 x 102
0.43 0.04 0.01 0.003 0.001 0.0006 1.0
4140 86,900 71,500 29,500 26,800 3600.0 2160
; 0.00521 0.065 0.1053 0.071 0.0222 — —
12.7 84.4 36.9 33.5 48.2 14.3 3.33
|
3.15 37.3 224 13.7 15.7 10.0 1.48
: 2.23 26.4 15.8 9.68 11.1 7.0 1.05
3
0.0084 0.00072 0.00021 0.000053 0.000021 0.000012] 0.0194
i
1




W. E. MOECKEL:

106

the Earth’s radius, to a circular satellite orbit at the destination planet, at a
radius 1.1 times the planet’s radius. We must, therefore, determine the relation
between the heliocentric trajectories, which can be obtained from Figs. 3 to 6,
and the velocity increments required in the satellite orbit.

The velocity increment required when a ship

Yem, P leaves or enters a satellite orbit is determined by

—=—==3 " 7 T~ ==~ the hyperbolic velocity of the ship; that is, by
N v its velocity relative to the planet at large distances

e PN from the planet. The relation between hyperbolic
Fig. 7 velocity #,, heliocentric approach or departure

velocity, », and the planet’s velocity is shown in
Fig. 7. The planet’s velocity, of course, is close to the local circular velocity
if the orbital eccentricity is small, as it is for most planets of interest. Assuming
that the planet’s velocity is exactly the circular velocity,

Vi

v, =V (vcos a —v)*+ (vsin a)i (24)

For transfer trajectories tangent to the planetary orbit
(a=10), the hyperbolic velocity is simply

v, =v—1,. (25)

When the hyperbolic velocity has been determined,
the velocity increment required at the desired satellite
radius r; is obtained from the energy equation. The

Fig. 8 energy per unit mass relative to the planet at large
distances from the planet is ,%/2; and, since this remains
constant, the velocity attained on the hyperbolic orbit at r=r, is (see Fig. 8)

v, =92+2 —=9v2+2y, 2. (26)

To settle into a circular orbit at r,, the velocity there must be reduced to the

circular velocity. Consequently, the required velocity impulse is
dv=v,,—v, ,=Vv2+20, 2

el

- !’hl' {27)

With egs. (27) and (24), the 4v required for any heliocentric approach or departure
velocity and angle can be calculated. Since we are also interested in total trip
time, we must now determine relations between
transit time, waiting time, and the heliocentric
trajectory variables.

Equations for Trip Time

The procedure for -caleulating trip times is
illustrated in Fig. 9, where £ and P refer to the
location of the Earth and the destination planet at
various times, 6, and @, are the angular distance
covered by the ship trajectory between the two
orbits on the way to the planet and on the return
rip, and £, is the angular movement of planet P during the waiting time f,.
A case is shown in which the journey to the planet is along the short leg of an
ellipse, and the return trip is along the long leg of a different ellipse. In order

Fig. 9
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that the spaceship and the Earth arrive at the same place at about the same
time, we must have

03.3‘"’ 2”-1201",1 T+ 91‘,‘3":'6w‘ (28)
Eq. (28) can be rewritten as
63 (tl ':'tw"."tz)_innsﬁr,l_%_ '92',2_:— fjptw (29)
20
Transfer trajectory:
Short branch: Wb
Long branch: abed
Venus' orbit
8 ~Earth's orbit /f
Hyperbolle velocity
/ at Venus, v,
1% +
d | 5
1 i ! = }
| ; |
o | <l M
5 Vi / l
/ / '\'=1-3c'uy impulse
at Venus, fw,
12 Vd -
)4 |
5 1 T
3 | |
i 10 // > il
: A A |
E / | | dyperbolic weloeity

/ i ; at Zarth, “¥h,1

L e T LT

e
~J
AN

N

2 3 4 5 5 7 3 El
Velocity impulse a: Earth, &y ailes/sec

Fig. 10. Excess-energy paths between Earth and Venus, starting and ending in eireular orbits at
r=1.1 Rpgner. @) Trajectory tangent at Earth’s orbit: velocities

where f, and 6, are the angular velocities of the Earth and the planet. Solving
for t, yields

Byt Opo—0p (i +t) +2nzx

t, 30
g —lp (30)
For a minimum-energy orbit, 6, ,=0,,=m= and eq. (30) becomes
2+ 1)x—0g
o= ﬁ__._}_l_iv (31)

[jg—fip

i
i
i
i
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directly if negative values of n are used.

3

§-0. 96861, deg
8 ]

Lead angle,
]

! |
3hert branch, tg

Short branch |
-40
180
(] b
120 =4 \ __‘_‘—‘*-—-——_._________~ |
\N'\ | | | { 1_:.-,;.:.—'._—.:.—.., |
50 ! I !

Tranait time, days

Angular distar
5
o
@

n : © 7 ]

veloeity Lmpulse mt Earth, av:, ziles/see

Fig. 10. &) Trajectory tangent at Earth's orbit: angular
distance and time

planet is closer to the sun.

Trajectories

compiled from [3] to [6].

In egs: (30) and (31), the minimum value of » is used for which ¢, is positive.
For planets closer to the sun than the Earth (0,>#0,), these formulas apply

Another convenient form of eq. (29) is as follows:

'93",2_"{.)3!'2=_“ ('91,1‘_'9'351)'5" (’ja_ ép) tw—i’n:’z‘ {32}

The quantity 6,—0,¢ is
the lead angle acquired by
the spaceship relative to
the Earth in the trip be-
tween orbits. Eq. (32) shows
the obvious result that,
for t,=0 and n=0, a lag
angle acquired on the trip
to the planet must be made
up by a lead angle on the
return trip.

The minimum trip
time, of course, is attained
by trajectories that permit
t, to be positive with
n= 0. The conditions on
trajectory angles and times
to accomplish this reduc-
tion are, from eq. (30),

R : - .
L2 T2 >0, for6,>0,

h+ 1ty
(33)

and

Op1+ 07,2 _ ; T
———== =0;for0,<0,.

b+ s
(34)

Relations (33) and (34)
state that the mean angular
velocity of the outward
and inward trajectories
must be greater than that of
the Earth if the destination

planet is farther from the sun. and must be less than that of the Earth if the

Basic Data on Solar System and Minimum-Energy

Table I presents miscellaneous data on the solar system. Included are masses,
gravitational constants, angular velocities, and distances needed for the inter-
planetary trajectory computations, as well as other information. The data were
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For minimum-energy orbits, the transit time is half the period of the ellipse
having major axis a equal to the sum of the radii of the origin and the destination:

Va2
T 32 =
s = , days (35)
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Velocity impulse at Venus, Av,, =iles/sec

Fig. 10. ¢) Trajectory tangent at Venus' orbit: velocities

where r, and r, are, respectively, the orbital radius of the Earth and of the
destination planet.

The hyperbolic velocity at the Earth’s orbit required to reach the destination
orbit 1s obtained as touows. From eq. (i0),

7 9 o \2 20
L,;:( | =2 (36)

\ Ve, 2 1+ 0m

where o, =r,[r,. Consequently, from eq. (25),

(37)

T e e
Yz =% Yz ™ Lr,z(
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The hyperbolic velocity at the destination orbit is obtained from egs. (11), (36),
and (25). Thus, the heliocentric velocity at the destination orbit is
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Fig. 10. d) Trajectory tangent at Venus’ orbit: angular distance and time
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Consequently, the hyperbolic velocity at the destination orbit is

3
Vp=V—0, p=10, ol —————, .. (39)

(1 1 g !
Om bt T Zmj

The velocity increments required to achieve these minimum-energy orbits
are then obtained by substituting these hyperbolic velocities into eq. (27).

Table II presents information on least-energy interplanetary trajectories,
Including transit times, waiting times, and velocity impulses required to leave
and enter circular satellite orbits at radii equal to 1.1 times the planetary radii.
The data of Table II are useful for reference and for comparison with excess-
energy values.
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Destination Body Mercury ‘ Venus ‘ Earth Mars | Jupiter | Saturn ‘ Uranus ‘Ncptune Pluto Moon
Hyperbolic velocity at Rarth’s
orbit to attain orbit of desti- —
nation ..., —4.66 | —1.555 0 1.85 5.46 6.38 7.02 7.26 7.36) — g,
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1.1 times surface radius ... .... 178 4.29 4.69 | 213 25.1 15.1 9.22 10.6 6.66 1.0 i
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ftfsec? ... . e 10.2 23.3 26.6 10.56 (9.8 30.56 27.7 29.8 11.8 4.4 5:
Initial velocity impulse to attain _ l 2
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orbit around Eurth at =
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|
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Trip Times as Funetion
One-Way Transit Times

The transit times and angular trajectory distances between the Earth's
orbit and the orbits of Venus and Mars have been calculated as a function of
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the velocity increments applied in circular orbits with radius equal to 1.1 times
the planetary radii. Results are shown for four families of trajectories: (1) trajec-
tories between Venus and Earth tangent at Earth’'s orbit [Figs. 10 (a) and (b)],
(2) trajectories between Venus and Earth tangent at Venus’ orbit [Figs. 10 (c)

and (d)], (3) trajectories between Earth and Mars tangent at Earth’s orbit
[Figs. 11 (a) and (b)], and (4) trajectories between Earth and Mars tangent at i

Mars’ orbit [Figs. 11 (¢) and (d)]. For each case, the first figure shows the hyper-

bolic velocities at the two orbits and the velocity increment required at the second !
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planet as functions of the velocity increment applied at the planet whose orbit
is tangent to the trajectory. The second figure shows the angular distance of
the trajectory, the transit time, and the lead angle for both the long and the short
branch of the transfer trajectory. (The hyperbolic velocities and the velocity
increments are, of course, the same for the long and the short branches.)
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Fig.11. ¢) Trajectory tangent at Mars’ orbit: velocities

Total Trip Time as Function oi Total Velocity Increments
With the basic one-way transit data of Figs. 10 and 11, the two-way transit
time, the waiting time, and the total trip time can be found as functions of the
sum of the four velocity increments required for the round trip. These quantities
can be found for a variety of combinations of outward and inward paths. Two
families of combinations have been selected for particular discussion. because
both have two of the four hyperbolic velocities tangent to an orbit. Such com-
binations are likely to produce time reductions with minimum excess energy,

IX. LLA.F.-Kongre 8
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because the v rises quite rapidly as the angle with which the trajectory crosses
an orbit increases. However, no proof exists that the families selected are
optimum.

Outward and inward trip along same ellipse.—The first family of combinations
consists of those that follow one or the other branch of the same ellipse on the
return trip as was followed on the trip to the planet. In this case, the two tangent
velocities occur at the same planet. For this family, the waiting times at the
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Fig. 11. d) Trajectory tangent at Mars’ orbit: angular distance and time

destination planet cannot be arbitrarily specified, because the angular distance
and the time required for the return trip have one of two values. depending
on whether the lonﬂ or the short branch of the ellipse is followed. For each ellipse,
there are, therefore, three combinations of to and fro trips: (1) Trip to planet
and return along short branch of ellipse (denoted by s—s); (2) trip to planet
along short branch and return trip along long branch, or vice versa (denoted
by s—I); (3) trip to planet and return along long branch (denoted by
1—1). '

Shown in Figs. 12 and 13 are the two-way transit times, the waiting times,
and the total round-trip times as functions of the sum of the four velocity in-
crements. In Fig. 12 (a), results are shown for the Earth—Venus trip along

S B SRS —.
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ellipses tangent to the orbit of Venus. Fig. 12 (b) shows the results for the
Earth—Venus trip along ellipses tangent to the Earth’s orbit. Fig. 13 (a) and
(b) show similar results for the Earth—Mars trip.

The first substantial reduction in total trip time for the Venus trip occurs
for a total Av of 10.6 miles per second [Fig. 12 (a)]. The trip time is reduced
from the least-energy value of 760 days to 520 days along a trajectory that follows
the long branch of the ellipse for both trips. The next reduction in trip times
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Fig. 12, Transit times, waiting times, and total round-trip times for excess-energy Venus trips along
single ellipse. a) Case I: Trajectory tangent at Venus’ orbit

oceurs for (4w),,,=12 miles per second. This trajectory is an ellipse having
the same pericd as the Earth and therefore yields a total trip time of 365 days
with zero waiting time. One trip is along the short branch and the other along
the long branch of the ellipse. An even greater reduction in total time occurs
for a total Av of 13.6 miles per second with short-short combination [Fig. 12 (b)].
The total time is reduced to 180 days, but very substantial increases are required
to provide waiting times sufficient for useful exploration.

For the Mars trip, much larger total velocity increments are required for
substantial reductions in trip times. The first breakthrough occurs with a total
Av of 12.4 miles per second [Fig. 13 (b)], for which the total trip time is reduced

g%
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from the least-energy value of 973 days to 540 days. This first reduction, again,
occurs for a long-long combination. The next substantial reduction in time
occurs with (4v),,,=26.2 miles per second. The total time, with zero wait
time at Mars, is 365 days, which again is an [—s trip along an ellipse having
a period equal to that of the Earth. This ellipse has its perigee about 40 x 108
miles from the sun. A further reduction in total time to 160 days is achieved
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Fig. 12. b) Case II: Trajectory tangent at Earth’s orbit

along an s—s trajectory with total Adv=29 miles per second [Fig.13 (a)];
however, sizable increases in Av are required to provide adequate exnloration
time.

Trips along elliptic arcs tangent at Earth’s orbit and at destination orbit.—
The second family of trajectories having two tangent hyperbolic velocities con-
sists of combinations for which one trajectory is tangent to the Earth’s orbit
and the other is tangent to the orbit of the destination planet. For this case,
for any outward trip, the waiting time can be specified, and the lead angles
of the return trajectories can be examined to determine which, if any. satisfies
eq. (32). Results are shown in Fig.14 (a) for the Earth—Venus trip and in Fig.14 (b)
for the Mars trip, both for waiting times of 0 and 100 days.
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For both trips, no solutions were found using short branches of orbits tangent
to Mars or Venus. This can be understood by examining Figs. 10 (b) and (d)
and 11 (b) and (d). For the short branch of the ellipses tangent to Venus’ orbit
[Fig. 10 (d)], the lead angle is positive and greater than 30° for the Av range
covered. Neither the short nor the long branch of the ellipses tangent to the
Earth’s orbit [Fig. 10 (b)] produces lag angles of as much as 30° to balance the
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Fig. 13. Transit times, waiting times, and total trip times for excess-energy Mars trips along single
ellipse. a) Case I: Trajectory tangent at Earth’s orbit

E%OQ lead angle. The long branch of the family of ellipses tangent to Venus,
however, produces lead angles up to 30° and lag angles up to 200° or higher
[Fig. 10 (d)]. These can balance all the lead angles for both the long and short
branches of the ellipses tangent to the Earth’s orbit. Similar considerations,
with change of sign, apply for the short branch of ellipses tangent to Mars’
orbit. :

The solutions of Fig. 14 indicate that the I—I trips produce longer trip
times for the same (Av),,,, than the s—I trips and are therefore not of interest.
The s—1 trips, however, produce reductions in trip time with lower Aw than
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those obtained with the first family of combinations. (The best reductions for
this family are indicated in Fig. 14 for comparison.) For zero waiting time, a
trip-time reduction to 400 days is obtained with a total v of 9.7 miles per second
for the Venus trip and with a total Av of 14.9 miles per second for the Mars
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Fig. 13. b) Case II: Trajectory tangent at Mars' orbit

trip. For 100-day waiting time, the required /v rises to 10.8 miles per second
for the Venus trip and to 20 miles per second for the Mars trip.

Concluding Remarks

The combinations of excess-energy trajectories studies herein were limited
to those attainable with a total of four velocity increments for the round trip,
and with two of the four hyperbolic velocities tangent to the planetary orbits.
These families appeared to offer the best possibility for reducing total trip time
with the least excess energy. It is possible, however, that other trajectories can
be found that require less energy for a given total trip time. Such families might
include trajectories tangent at neither apsis, or trajectories with more than four
velocity increments.
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Addendum

After completion of this paper, the author found that another paper on round-
trip interplanetary journeys had recently been presented!. In this paper are included
results for a number of Mars trajectories, including most of those contained herein.
However, no results were reported for the Venus trip.

! K.A Esrickg, M. D. WarTLOCK, R. L. CHAPMAN and C. H. Purpy, Calculations
on a Manned Nuclear-Propelled Space Vehicle. Presented at the 12th Annual Meeting
of the American Rocket Society, Dec. 2—35, 1957.




